Preclinical Research Resources

FARA-funded research has facilitated the discovery and development of research resources such as animal models, cell models, antibodies, biorepositories etc. We are grateful to the discovery scientists who have worked hard to bring us these important assets and continue to give to the community by sharing their results, knowledge, expertise and resources. It is our goal to promote collaboration throughout the research community by communicating with the discovery, translational and clinical scientists and facilitating their access to such resources. For more information visit: http://www.curefa.org/researchresources.

Biorepositories:

Plasma, serum, and fresh samples. Through the Collaborative Clinical Research Network (CCRN) in Friedreich’s ataxia, biorepositories of DNA, RNA, plasma and serum from Friedreich’s ataxia patients have been established. Additionally, investigators in the CCRN in Friedreich’s ataxia are willing to collaborate with researchers who need fresh biological samples from Friedreich’s ataxia patients for translational and clinical research studies. For more information contact David Lynch at lynchd@pennmedicine.upenn.edu.

Tissue Bank. To make valuable tissues available to Friedreich’s ataxia investigators everywhere, FARA supports an autopsy and tissue donation program at the VA Medical Center in Albany, New York. The program’s principal investigator, Arnulf Koeppen, MD who is a neurologist and neuropathologist that has made significant contributions to our understanding of Friedreich’s ataxia as well as other ataxias. This tissue bank has fixed and frozen tissues from brain, spinal cord, heart, sural nerve, and pancreas of 30 individuals with Friedreich’s ataxia. Requests for tissues can be made to Dr. Koeppen (email: arnulf.koeppen@va.gov, phone: 518-626-6391 or 518-626-6377).

Cell Lines:

A repository of >64 Friedreich’s ataxia fibroblast lines and 11 carrier lines have been established in collaboration between the laboratories of Marek Napierala, PhD at the University of Alabama at Birmingham, and David Lynch, MD at the Children’s Hospital of Philadelphia. Send requests to mnapiera@uab.edu or lynchd@pennmedicine.upenn.edu (http://www.curefa.org/pdf/research/Repository-FA-Fibroblasts-2016.pdf).

Reference:
- Li Y¹, Polak U², Clark AD¹, Bhalla AD¹, Chen YY¹, Li J¹, Farmer J³, Seyer L³, Lynch D³, Butler JS¹, Napierala M¹,², (2016) Establishment and Maintenance of Primary Fibroblast Repositories for Rare Diseases-Friedreich's Ataxia Example. Biopreserv Biobank. 2016 Aug;14(4):324-9.

Two of the fibroblast lines from the Napierala/Lynch repository are available at Kerafast: Cell line 4230 (GAA1 ~870 repeats, GAA2 ~1470 repeats) and cell line 4654 (GAA1 ~190 repeats, GAA2 ~500 repeats). https://www.kerafast.com/product/3168/friedreichs-ataxia-skin-fibroblast-cell-lines

Twelve of the fibroblast lines from the Napierala/Lynch repository are available at abm, https://magento.abmgood.com/Primary-and-Immortalized-Cell-Library-0.html

There are lines available from both males and females with varying sizes of GAA repeat expansion.
Cell Lines:

Friedreich’s ataxia lymphoblast and fibroblast cell lines are available at the Coriell Cell Repository. Please note that several researchers have reported problems working with the fibroblast lines from Coriell (they have been passaged many times) and there are only a few lines available.


Friedreich’s ataxia derived induced pluripotent stem cells (iPSCs) are also available at Coriell Cell Repository. These cell lines were established by the laboratory of Joel Gottesfeld, PhD at The Scripps Research Institute. Coriell provides a Certificate of Analysis.

- http://ccr.coriell.org/Sections/Search/Sample_Detail.aspx?PgId=166&Ref=GM23913

References:


Expression Array Data:

FARA is working with Giovanni Coppola, PhD at UCLA and the Collaborative Clinical Research Network (CCRN) and others to develop a database of gene expression data from Friedreich’s ataxia patients and from mouse models of the disease. The database is available from Dr. Coppola’s website at https://coppolalab.ucla.edu/account/login/. You will need to register for a password to access the database. Array data is available for some patients who have taken part in natural history studies through the CCRN, so clinical data can be accessed. Additional data is still being added over time, and additional analyses are underway. For more information, please contact Giovanni Coppola: gcoppola@ucla.edu

Mouse Models (see separate document for more detail):

Friedreich’s ataxia transgenic mouse models are now available through the Jackson Laboratory (JAX), and through collaborations with Brunel University (UK), Erasme University (Belgium), Murdoch Children’s Research Institute (Australia), INSERM (France), and UCLA (California). These models include humanized mice that have a human gene with a repeat sequence inserted (Pook and Sarsero), models with a repeat sequence inserted into the frataxin mouse gene (Pandolfo KIKO), and models where frataxin is ablated (INSERM and Puccio conditional knockout, and UCLA inducible frataxin knockdown).

Cell Models & High-Throughput Assays:

FARA works closely with several investigators in the United States, Europe and Australia who are developing Friedreich’s ataxia neuronal and cardiac cell models by differentiation of iPSCs derived from patient fibroblasts. Some of these models are available for sharing and some Friedreich’s ataxia iPSCs are being banked for greater access to researchers worldwide.

For example, FARA funded efforts include:
Other cellular models have been developed from a variety of approaches, with different defining features. For example, Helene Puccio, PhD and colleagues developed murine cellular models for FA that have all the biochemical phenotypes associated with Friedreich’s ataxia; making this model useful for drug discovery.

That work can be found here:

Several other investigators have developed high throughput assays for drug discovery in Friedreich’s ataxia. These assays vary significantly – some assays developed focus on readouts of mitochondrial function, some focus on direct measurements of frataxin (e.g., genetically-derived assays using cells that carry the expanded GAA repeats in the frataxin gene). If you would like to learn more about these cellular models or assays or to be connected directly to these discovery scientists please contact: Jen Farmer ([jen.farmer@curefa.org](mailto:jen.farmer@curefa.org)), and see the associated informational sheet on frataxin-related assays.