Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

FARAFARA Cure FA

 

FARA Funded Research

Your generous support has funded all the research listed below.

For more information on FARA-funded research & scientists, please visit FARA Supported Research, Active Clinical Trials and the Featured Scientist.


 

 

Characterization of a new N-terminally acetylated extra-mitochondrial isoform of frataxin in human erythrocytes

Frataxin is a highly conserved protein encoded by the frataxin (FXN) gene. The full-length 210-amino acid form of protein frataxin (1-210; isoform A) expressed in the cytosol of cells rapidly gets moved to the mitochondria, where it is converted to the mature form (81-210). Mature frataxin (81-210) is a critically important protein because it facilitates the assembly of mitochondrial iron-sulfur cluster protein complexes such as aconitase, lipoate synthase, and succinate dehydrogenases. Decreased expression of frataxin protein is responsible for Friedreich's ataxia. The mitochondrial form of frataxin has long been thought to be present in red blood cells even though they lack mitochondria. This paper shows that frataxin in red blood cells is a novel form of frataxin (called isoform E) with 135-amino acids and an N-terminally acetylated methionine residue. There is three times more isoform E in red blood cells from the whole blood of healthy volunteers compared to the mature mitochondrial frataxin present in other blood cells. Isoform E lacks a mitochondrial targeting sequence and so is distributed to both cytosol and the nucleus when expressed in cultured cells. When extra-mitochondrial frataxin isoform E is expressed in HEK 293 cells, it is converted to a shorter isoform identical to the mature frataxin found in mitochondria, which raises the possibility that it is involved in disease etiology. The ability to specifically quantify extra-mitochondrial and mitochondrial isoforms of frataxin in whole blood will make it possible to readily follow the natural history of diseases such as Friedreich's ataxia and monitor the efficacy of therapeutic interventions.

Read the entire article HERE

Calcium Deregulation: Novel Insights to Understand Friedreich's Ataxia Pathophysiology

Friedreich's Ataxia (FRDA) is a neurodegenerative disorder, characterized by degeneration of dorsal root ganglia, cerebellum and cardiomyopathy. This study investigates Ca2+ homeostasis in cerebellar granule neurons (CGNs) and in cardiomyocytes to understand the pathogenesis of degeneration. Ca2+ homeostasis in neurons and cardiomyocytes is not only crucial for cell health, but is also importantly involved in the ability of both neurons and cardiomyocytes to function. By challenging Ca2+ homeostasis in CGNs, and in adult and neonatal cardiomyocytes of FRDA models, we have assessed the impact of frataxin decrease on both neuronal and cardiac physiopathology. Interestingly, we have found that Ca2+ homeostasis is altered both cell types. CGNs showed a Ca2+ mishandling under depolarizing conditions and this was also reflected in the endoplasmic reticulum (ER) content. In cardiomyocytes we found that the sarcoplasmic reticulum (SR) Ca2+ content was pathologically reduced, and that mitochondrial Ca2+ uptake was impaired. Our findings demonstrate that in both neurons and cardiomyocytes the decreased Ca2+ level within the stores has a comparable detrimental impact in their physiology. In cardiomyocytes, we found that ryanodine receptors (RyRs) may be leaking and expel more Ca2+ out from the SR. At the same time mitochondrial uptake was altered and we found that Vitamin E can restore this defect. Moreover, Vitamin E protects from cell death induced by hypoxia-reperfusion injury, revealing novel properties of Vitamin E as potential therapeutic tool for FRDA cardiomyopathy.

Read the entire article HERE

Phenothiazine antioxidants increase mitochondrial biogenesis and frataxin levels in Friedreich's ataxia cells

Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease that is linked to transcriptional repression of the nuclear FXN gene encoding the essential mitochondrial protein frataxin (FXN). Compounds that increase frataxin levels may enable effective therapeutic intervention for blunting disease progression. Recently, we showed that lipophilic methylene violet (MV) and methylene blue (MB) analogues both conferred benefit to cultured FRDA cells in several regards, including ROS suppression, maintenance of mitochondrial membrane potential and increased ATP production. Some of the MB analogues were also shown to promote increased frataxin levels and mitochondrial biogenesis. Presently, we report that two of the MV analogues studied previously (1 and 2) also increased frataxin levels and mitochondrial biogenesis significantly. Because the substitution pattern in the two series of compounds was not the same, we also prepared new MV derivatives having the same substitution pattern as the original MB derivatives studied to enable a more direct comparison. Two of the new MV compounds, 4b and 6b, exhibited enhanced antioxidant capability, increased frataxin levels and mitochondrial biogenesis, and improved aconitase activity. These encouraging findings demonstrated that the MV analogues had better overall activity with less cytotoxicity.

Read the entire article HERE

Chemical synthesis of lipophilic methylene blue analogues which increase mitochondrial biogenesis and frataxin levels

As part of an ongoing program to develop potential therapeutic agents for the treatment of the neurodegenerative disease Friedreich׳s ataxia (FRDA), this group has prepared a number of lipophilic methylene blue analogues. Some of these compounds significantly increase mitochondrial biogenesis and frataxin levels in cultured Friedreich's ataxia cells . This data article describes the chemical synthesis and full physicochemical characterization of the new analogues.

Read the entire article HERE

Activating frataxin expression by single-stranded siRNAs targeting the GAA repeat expansion

Friedreich's ataxia (FRDA) is an incurable neurodegenerative disorder caused by reduced expression of the mitochondrial protein frataxin (FXN). The genetic cause of the disease is an expanded GAA repeat within the FXN gene. Agents that increase expression of FXN protein are a potential approach to therapy. This group has previously described anti-trinucleotide GAA duplex RNAs (dsRNAs) and antisense oligonucleotides (ASOs) that activate FXN protein expression in multiple patient derived cell lines. Here they test two distinct series of compounds for their ability to increase FXN expression. ASOs with butane linkers showed low potency, which is consistent with the low Tm values and suggesting that flexible conformation impairs activity. By contrast, single-stranded siRNAs (ss-siRNAs) that combine the strengths of dsRNA and ASO approaches had nanomolar potencies. ss-siRNAs provide an additional option for developing nucleic acid therapeutics to treat FRDA.

Read the entire article HERE

Page 1 of 23

SHARE

FacebookTwitterLinkedInYoutube
Science B.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News