Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

FARAFARA Cure FA

 

FARA Funded Research

Your generous support has funded all the research listed below.

For more information on FARA-funded research & scientists, please visit FARA Supported Research, Active Clinical Trials and the Featured Scientist.


 

 

Peripheral blood gene expression reveals an inflammatory transcriptomic signature in Friedreich's ataxia patients

Transcriptional changes in Friedreich's ataxia (FRDA), a rare and debilitating recessive Mendelian neurodegenerative disorder, have been studied in affected but inaccessible tissues - such as dorsal root ganglia, sensory neurons, and cerebellum - in animal models or small patient series. However, transcriptional changes induced by FRDA in peripheral blood, a readily accessible tissue, have not been characterized in a large sample. We used differential expression, association with disability stage, network analysis, and enrichment analysis to characterize the peripheral blood transcriptome and identify genes that were differentially expressed in FRDA patients (n = 418) compared to both heterozygous expansion carriers (n = 228) and controls (n = 93, 739 individuals in total), or were associated with disease progression, resulting in a disease signature for FRDA. We identified a transcriptional signature strongly enriched for an inflammatory innate immune response. Future studies should seek to further characterize the role of peripheral inflammation in FRDA pathology and determine its relevance to overall disease progression.

Read the entire article HERE

Lipophilic methylene blue analogues enhance mitochondrial function and increase frataxin levels in a cellular model of Friedreich's ataxia

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder resulting from reduced expression of the protein frataxin (FXN). Although its function is not fully understood, frataxin appears to help assemble iron sulfur clusters; these are critical for the function of many proteins, including those needed for mitochondrial energy production. Finding ways to increase FXN levels has been a major therapeutic strategy for this disease. Previously, we described a novel series of methylene violet analogues and their structural optimization as potential therapeutic agents for neurodegenerative and mitochondrial disorders. Presently, a series of methylene blue analogues has been synthesized and characterized for their in vitro biochemical and biological properties in cultured Friedreich's ataxia lymphocytes. Favorable methylene blue analogues were shown to increase frataxin levels and mitochondrial biogenesis, and to improve aconitase activity. The analogues were found to be good ROS scavengers, and able to protect cultured FRDA lymphocytes from oxidative stress resulting from inhibition of complex I and from glutathione depletion. The analogues also preserved mitochondrial membrane potential and augmented ATP production. Our results suggest that analogue 5, emerging from the initial structure of the parent compound methylene blue (MB), represents a promising lead structure and lacks the cytotoxicity associated with the parent compound MB.

Read the entire article HERE

Impact of Mobility Device Use on Quality of Life in Children With Friedreich Ataxia

This study was set up to determine how mobility device use impacts quality of life in children with Friedreich ataxia. Data from 111 pediatric patients with genetically confirmed Friedreich ataxia were collected from a prospective natural history study utilizing standardized clinical evaluations, including health-related quality of life using the Pediatric Quality of Life Inventory (PedsQL) 4.0 Generic Core Module. Mobility device use was associated with worse mean PedsQL total, physical, emotional, social, and academic subscores, after adjusting for gender, age of disease onset, and Friedreich Ataxia Rating Scale score. The magnitude of the difference was greatest for the physical subscore (-19.5 points, 95% CI = -30.00, -8.99, P < .001) and least for the emotional subscore (-10.61 points, 95% CI = -20.21, -1.02, P = .03). Transition to or between mobility devices trended toward worse physical subscore (-16.20 points, 95% CI = -32.07, -0.33, P = .05). The authors conclude that mobility device use is associated with significant worsening of all domains of quality of life in children with Friedreich ataxia.

Read the entire article HERE

Identification of p38 MAPK as a novel therapeutic target for Friedreich's ataxia

Friedreich ataxia (FRDA) is an autosomal recessive neuro- and cardio-degenerative disorder caused by decreased expression of frataxin, a protein that localizes to mitochondria and is critical for iron-sulfur-cluster (ISC) assembly. There are no proven effective treatments for FRDA. We previously screened a random shRNA library and identified a synthetic shRNA (gFA11) that reverses the growth defect of FRDA cells in culture. We now report that gFA11 decreases cytokine secretion in primary FRDA fibroblasts and reverts other changes associated with cell senescence. The gene-expression profile induced by gFA11 is remarkably similar to the gene-expression profile induced by the p38 MAPK inhibitor SB203580. We found that p38 phosphorylation, indicating activation of the p38 pathway, is higher in FRDA cells than in normal control cells, and that siRNA knockdown of frataxin in normal fibroblasts also increases p38 phosphorylation. Treatment of FRDA cells with p38 inhibitors recapitulates the reversal of the slow-growth phenotype induced by clone gFA11. These data highlight the involvement of the p38 MAPK pathway in the pathogenesis of FRDA and the potential use of p38 inhibitors as a treatment for FRDA.

Read the entire article HERE

GAA•TTC repeat expansion in human cells is mediated by mismatch repair complex MutLγ and depends upon the endonuclease domain in MLH3 isoform one

DNA repeat expansion underlies dozens of progressive neurodegenerative disorders. While the mechanisms driving repeat expansion are not fully understood, increasing evidence suggests a central role for DNA mismatch repair. The mismatch repair recognition complex MutSβ (MSH2-MSH3) that binds mismatched bases and/or insertion/deletion loops has previously been implicated in GAA•TTC, CAG•CTG and CGG•CCG repeat expansion, suggesting a shared mechanism. MutSβ has been studied in a number of models, but the contribution of subsequent steps mediated by the MutL endonuclease in this pathway is less clear. Here we show that MutLγ (MLH1-MLH3) is the MutL complex responsible for GAA•TTC repeat expansion. Lentiviral expression of shRNA targeting MutL nuclease components MLH1, PMS2, and MLH3 revealed that reduced expression of MLH1 or MLH3 reduced the repeat expansion rate in a human Friedreich ataxia cell model, while targeting PMS2 did not. Using splice-switching oligonucleotides we show that MLH3 isoform 1 is active in GAA•TTC repeat expansion while the nuclease-deficient MLH3 isoform 2 is not. MLH3 isoform switching slowed repeat expansion in both model cells and FRDA patient fibroblasts. Our work indicates a specific and active role for MutLγ in the expansion process and reveals plausible targets for disease-modifying therapies.

Read the entire article HERE

Page 8 of 28

SHARE

FacebookTwitterLinkedInYoutube
Family B.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News