Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

FARAFARA Cure FA

 

Scientific News

FARA funds research progress

In this section, you will find the most recent FA research publications, many of which are funded by FARA, as well as information on upcoming conferences and symposiums. You can search for articles by date using the archive box in the right hand column. To locate FARA Funded or Supported Research, click the hyperlink in the right hand column. You may also search for specific content using key words or phrases in the search button at the top right of your screen. Please be sure to visit other key research sections of our website for information on FARA’s Grant Program and the Treatment Pipeline.

 


 

RNA-Dependent Epigenetic Silencing Directs Transcriptional Downregulation Caused by Intronic Repeat Expansions

Transcriptional downregulation caused by intronic triplet repeat expansions underlies diseases such as Friedreich's ataxia. This downregulation of gene expression is coupled with epigenetic changes, but the underlying mechanisms are unknown. Here, we show that an intronic GAA/TTC triplet expansion within the IIL1 gene of Arabidopsis thaliana results in accumulation of 24-nucleotide short interfering RNAs (siRNAs) and repressive histone marks at the IIL1 locus, which in turn causes its transcriptional downregulation and an associated phenotype. Knocking down DICER LIKE-3 (DCL3), which produces 24-nucleotide siRNAs, suppressed transcriptional downregulation of IIL1 and the triplet expansion-associated phenotype. Furthermore, knocking down additional components of the RNA-dependent DNA methylation (RdDM) pathway also suppressed both transcriptional downregulation of IIL1 and the repeat expansion-associated phenotype. Thus, our results show that triplet repeat expansions can lead to local siRNA biogenesis, which in turn downregulates transcription through an RdDM-dependent epigenetic modification.

Read the entire article HERE

Zinc(II) binding on human wild-type ISCU and Met140 variants modulates NFS1 desulfurase activity

Human de novo iron-sulfur (Fe-S) assembly complex consists of cysteine desulfurase NFS1, accessory protein ISD11, acyl carrier protein ACP, scaffold protein ISCU, and allosteric activator frataxin (FXN). FXN binds the NFS1-ISD11-ACP-ISCU complex (SDAU), to activate the desulfurase activity and Fe-S cluster biosynthesis. In the absence of FXN, the NFS1-ISD11-ACP (SDA) complex was reportedly inhibited by binding of recombinant ISCU. Recent studies also reported a substitution at position Met141 on the yeast ISCU orthologue Isu, to Ile, Leu, Val, or Cys, could bypass the requirement of FXN for Fe-S cluster biosynthesis and cell viability. Here, we show that recombinant human ISCU binds zinc(II) ion, as previously demonstrated with the E. coli orthologue IscU. Surprisingly, the relative proportion between zinc-bound and zinc-depleted forms varies among purification batches. Importantly the presence of zinc in ISCU impacts SDAU desulfurase activity. Indeed, removal of zinc(II) ion from ISCU causes a moderate but significant increase in activity compared to SDA alone, and FXN can activate both zinc-depleted and zinc-bound forms of ISCU complexed to SDA. Taking into consideration the inhibition of desulfurase activity by zinc-bound ISCU, we characterized wild type ISCU and the M140I, M140L, and M140V variants under both zinc-bound and zinc-depleted conditions, and did not observe significant differences in the biochemical and biophysical properties between wild-type and variants. Importantly, in the absence of FXN, ISCU variants behaved like wild-type and did not stimulate the desulfurase activity of the SDA complex. This study therefore identifies an important regulatory role for zinc-bound ISCU in modulation of the human Fe-S assembly system in vitro and reports no 'FXN bypass' effect on mutations at position Met140 in human ISCU. Furthermore, this study also calls for caution in interpreting studies involving recombinant ISCU by taking into consideration the influence of the bound zinc(II) ion on SDAU complex activity.

Read the entire article HERE

PTC Therapeutics to acquire Agilis Biotherapeutics

FARA is pleased to share news that one of our gene therapy partners, Agilis Biotherapeutics, has been acquired by PTC Therapeutics. PTC Therapeutics will bring expertise in rare disease drug development and additional resources to advance the work that Agilis has initiated in FA gene therapy. We are looking forward working with PTC Therapeutics to accelerate this important FA program.

Read the entire article HERE

Young Investigators, Call for Abstracts for the 11th Annual Friedreich's Ataxia Symposium

Young investigators are invited to present posters at the 11th Annual Friedreich’s Ataxia Symposium hosted by The Children’s Hospital of Philadelphia (CHOP) and FARA at a welcome reception on the evening of Sunday, October 14, and throughout the day on Monday, October 15, 2018 at the Crowne Plaza Valley Forge in King of Prussia, PA. This symposium presents an opportunity to share your work not only with colleagues but also with the patient community. Priority will be given to those who can best present to a lay audience. Deadline for submissions: August 8th, 2018.

         FA Symposium Call for Abstracts 2018 (pdf)

         2018 FA Symposium Abstract Submission Form (docx)

Impact of Drosophila Models in the Study and Treatment of Friedreich's Ataxia

Drosophila melanogaster has been for over a century the model of choice of several neurobiologists to decipher the formation and development of the nervous system as well as to mirror the pathophysiological conditions of many human neurodegenerative diseases. The rare disease Friedreich's ataxia (FRDA) is not an exception. Since the isolation of the responsible gene more than two decades ago, the analysis of the fly orthologue has proven to be an excellent avenue to understand the development and progression of the disease, to unravel pivotal mechanisms underpinning the pathology and to identify genes and molecules that might well be either disease biomarkers or promising targets for therapeutic interventions. In this review, we aim to summarize the collection of findings provided by the Drosophila models, but also to go one step beyond and propose the implications of these discoveries for the study and cure of this disorder. We will present the physiological, cellular and molecular phenotypes described in the fly, highlighting those that have given insight into the pathology and we will show how the ability of Drosophila to perform genetic and pharmacological screens has provided valuable information that is not easily within reach of other cellular or mammalian models.

Read the entire article HERE

Page 9 of 158

SHARE

FacebookTwitterLinkedInYoutube
Event C.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News