Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

FARAFARA Cure FA

 

Scientific News

FARA funds research progress

In this section, you will find the most recent FA research publications, many of which are funded by FARA, as well as information on upcoming conferences and symposiums. You can search for articles by date using the archive box in the right hand column. To locate FARA Funded or Supported Research, click the hyperlink in the right hand column. You may also search for specific content using key words or phrases in the search button at the top right of your screen. Please be sure to visit other key research sections of our website for information on FARA’s Grant Program and the Treatment Pipeline.


Drug Insight: antioxidant therapy in inherited ataxias

The inherited ataxias are a large, heterogeneous group of neurodegenerative disorders caused by a variety of gene mutations, the effects of which are exerted through different pathogenic mechanisms. Despite this diversity, oxidative stress seems to be a common factor in the pathogenesis of these disorders, indicating that antioxidants might be potential therapeutics for these currently incurable conditions. Some inherited ataxias, such as ataxia with vitamin E deficiency, are directly caused by defects in small-molecule antioxidants and might be treated by supplying the defective molecule. In most ataxias, however, oxidative stress has more-complex disease-specific causes and consequences, which must be better understood to enable effective treatments to be developed. Results from studies in cellular and animal models need to be brought to the clinic through rigorous trials. The rarity of each of these diseases can, however, make trial design and execution a very difficult task.

Read More: Drug Insight: antioxidant therapy in inherited ataxias

Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications

Various pathologies are characterized by the accumulation of toxic iron in cell compartments. In anemia of chronic disease, iron is withheld by macrophages, leaving extracellular fluids iron-depleted. In Friedreich ataxia, iron levels rise in the mitochondria of excitable cells but decrease in the cytosol. We explored the possibility of using deferiprone, a membrane-permeant iron chelator in clinical use, to capture labile iron accumulated in specific organelles of cardiomyocytes and macrophages and convey it to other locations for physiologic reuse. Deferiprone's capacity for shuttling iron between cellular organelles was assessed with organelle-targeted fluorescent iron sensors in conjunction with time-lapse fluorescence microscopy imaging. Deferiprone facilitated transfer of iron from extracellular media into nuclei and mitochondria, from nuclei to mitochondria, from endosomes to nuclei, and from intracellular compartments to extracellular apotransferrin.

Read More: Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications

Brain structural damage in Friedreich's ataxia

OBJECTIVE:
Neuropathological descriptions of the brain in Friedreich's ataxia (FRDA) were obtained before availability of the current molecular genetic tests for this disease. Voxel-based morphometry (VBM) enables an unbiased whole-brain quantitative analysis of differences in gray matter (GM) and white matter (WM) volume.

METHODS:
Using VBM, we assessed the brain structural damage in 22 patients with genetically confirmed FRDA and 25 healthy controls. The results were correlated with the disease duration and the severity of the patients' clinical deficits--evaluated using the International Cerebellar Ataxia Rating Scale and Inherited Ataxia Clinical Rating Scale.

Read More: Brain structural damage in Friedreich's ataxia

Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia

Friedreich ataxia (FRDA), the commonest of the inherited ataxias, is a multisystem neurodegenerative condition that affects ocular motor function. We assessed eye movement abnormalities in 20 individuals with genetically confirmed FRDA and compared these results to clinical measures. All subjects were assessed with infrared oculography. Fifteen individuals underwent a full protocol of eye movement recordings. Ten subjects were analysed using two-dimensional scleral coil equipment and five using three-dimensional scleral coil recording equipment. We also recorded visual quality of life, Sloan low contrast letter acuity and Friedreich Ataxia Rating Scale scores to compare to the visual measures. Whilst saccadic velocity was essentially normal, saccadic latency was prolonged. The latency correlated with clinical measures of disease severity, including the scores for the Friedreich Ataxia Rating Scale and the Sloan low contrast letter acuity tests.

Read More: Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia

Major targets of iron-induced protein oxidative damage in frataxin-deficient yeasts are magnesium-binding proteins

Iron accumulation has been associated with several pathological conditions such as Friedreich ataxia. This human disorder is caused by decreased expression of frataxin. Iron-overload triggers oxidative stress, but the main targets of such stress are not known. In yeast cells lacking the frataxin ortholog YFH1, we have identified a set of 14 carbonylated proteins, which include mitochondrial ATP synthase, phosphoglycerate kinase, pyruvate kinase, and molecular chaperones. Interestingly, most of the target proteins are magnesium- and/or nucleotide-binding proteins. This key feature leads us to postulate that when iron accumulates, chelatable iron replaces magnesium at the corresponding metal-binding site, promoting selective damage to these proteins. Consistent with this hypothesis, in vitro experiments performed with pure pyruvate kinase and phosphoglycerate kinase showed that oxidation of these proteins can be prevented by magnesium and increased by the presence of ATP.

Read More: Major targets of iron-induced protein oxidative damage in frataxin-deficient yeasts

Page 169 of 173

SHARE

FacebookTwitterLinkedInYoutube
Science D.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News


Site Map     Privacy Policy     Service Terms     Log-in     Contact     Charity Navigator