Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

 

Scientific News

FARA funds research progress

In this section, you will find the most recent FA research publications, many of which are funded by FARA, as well as information on upcoming conferences and symposiums. You can search for articles by date using the archive box in the right hand column. To locate FARA Funded or Supported Research, click the hyperlink in the right hand column. You may also search for specific content using key words or phrases in the search button at the top right of your screen. Please be sure to visit other key research sections of our website for information on FARA’s Grant Program and the Treatment Pipeline.


Global, multi-stakeholder, consortium launched to study neuroimaging biomarkers for Friedreich Ataxia

A Natural History Study to TRACK Brain and Spinal Cord Changes in Individuals with Friedreich Ataxia (TRACK-FA)

Downingtown, PA (September 24, 2020) - The Friedreich’s Ataxia Research Alliance (FARA) and partner organizations proudly announce an international consortium of academic, industry, and patient advocacy partners to launch a natural history study to TRACK brain and spinal cord changes in individuals with Friedreich’s ataxia (FA). Friedreich’s ataxia is a rare debilitating, life-shortening, degenerative neuro-muscular disorder. About 5,000 people in the United States and 15,000 worldwide live with FA.

The TRACK-FA study is the most extensive worldwide longitudinal, multi-center neuroimaging study in FA with 200 children and adults (and ~100 matched controls) and three assessments (baseline, 12-month, and 24-month follow-up). The TRACK-FA study aims to improve understanding of the natural disease history of FA (specifically, related to changes in the brain and spinal cord), validate neuroimaging measurements in FA to deliver a set of trial-ready biomarkers, and develop a comprehensive database to facilitate ongoing community research and discovery. The study is a collaboration between six international sites, including, Monash University (Australia), University of Minnesota (USA), Aachen University (Germany), University of Campinas (Brazil), University of Florida (USA), and the Children’s Hospital of Philadelphia (USA). FARA (USA) and several industry partners will provide input on study design, endpoints, and monitoring. The goal is to begin enrolling before the end of 2020, as individual sites are able to return to clinical research activities. Updates on opening enrollment will be shared through each of the study sites, FARA and clinicaltrials.gov, clinicaltrials.gov/ct2/show/NCT04349514

FARA CEO, Jennifer Farmer said, “TRACK-FA is a great example of public-private partnership and research advancement in the pre-competitive space. As we all need better tools to understand and measure what is happening in the FA brain and spinal cord, FARA is proud to support this international consortium. The goal of TRACK-FA is to deliver such tools for future clinical trials.”

Professor Georgiou-Karistianis from Monash University states, “We are very excited that this international collaboration brings together significant expertise in FA from across the globe. For the first time, TRACK-FA will validate neuroimaging biomarkers so that they’re ready to be pushed through the drug development pipeline. TRACK-FA provides real promise to accelerate the effort for new treatments in this rare disease.”

The study has been registered with ClinicalTrials.gov, clinicaltrials.gov/ct2/show/NCT04349514 and provides more information about TRACK-FA and a list of sites with contact information.

Emerging therapies in Friedreich's Ataxia

This review covers past and emerging therapies for Friedreich's Ataxia (FRDA), including antioxidants and mitochondrial-related agents, nuclear factor erythroid-derived 2-related factor 2 (Nrf2) activators, deuterated polyunsaturated fatty acids, iron chelators, histone deacetylase (HDAC) inhibitors, trans-activator of transcription (TAT)-frataxin, interferon gamma (IFNγ), erythropoietin, resveratrol, gene therapy, and anti-sense oligonucleotides (ASOs), among others. While drug discovery has been challenging, new and exciting prospective treatments for FRDA are currently on the horizon, including pharmaceutical agents and gene therapy. Agents that enhance mitochondrial function, such as Nrf2 activators, dPUFAs and catalytic antioxidants, as well as novel methods of frataxin augmentation and genetic modulation will hopefully provide treatment for this devastating disease.

Read the Entire Article Here

Iron-sulfur cluster protein NITROGEN FIXATION S-LIKE 1 and its interactor FRATAXIN function in plant immunity

Iron-sulfur (Fe-S) clusters are inorganic cofactors that are present in all kingdoms of life as part of a large number of proteins involved in several cellular processes, including DNA replication and metabolism. This work demonstrates an additional role for two Fe-S cluster genes in biotic stress responses in plants. Eleven Fe-S cluster genes, including the NITROGEN FIXATION S (NIFS)-LIKE 1 (NFS1) and its interactor FRATAXIN (FH), when silenced in Nicotiana benthamiana, compromised nonhost resistance to Pseudomonas syringae pv. tomato T1. NbNFS1 expression was induced by pathogens and salicylic acid. Arabidopsis thaliana atnfs and atfh mutants, with reduced AtNFS1 or AtFH gene expression, respectively, showed increased susceptibility to both host and nonhost pathogen infection. Arabidopsis AtNFS1 and AtFH overexpressor lines displayed decreased susceptibility to infection by host pathogen P. syringae pv. tomato DC3000. The AtNFS1 overexpression line exhibited constitutive upregulation of several defense-related genes and enrichment of gene ontology terms related to immunity and salicylic acid responses. These results demonstrate that NFS1 and its interactor FH are involved not only in nonhost resistance but also in basal resistance, suggesting a new role of the Fe-S cluster pathway in plant immunity.

Read the Entire Article Here

Altered Secretome and ROS Production in Olfactory Mucosa Stem Cells Derived from Friedreich's Ataxia Patients

Human olfactory ecto-mesenchymal stem cells represent a novel model that could prove useful due to their accessibility and neurogenic capacity. Here, the authors isolated and cultured these stem cells from Friedreich´s ataxia patients and healthy donors, characterizing their phenotype and describing disease-specific features such as reduced cell viability, impaired aconitase activity, increased ROS production and the release of cytokines involved in neuroinflammation. Importantly, they observed a positive effect on patient-derived cells, when frataxin levels were restored, confirming the utility of this in vitro model to study the disease. This model will improve the understanding of Friedreich´s ataxia pathogenesis and will help in developing rationally designed therapeutic strategies.

Read the Entire Article Here

Iron-Sulfur Cluster Complex Assembly in the Mitochondria of Arabidopsis thaliana

In plants, the cysteine desulfurase (AtNFS1) and frataxin (AtFH) are involved in the formation of Fe-S groups in mitochondria, specifically, in Fe and sulfur loading onto scaffold proteins, and the subsequent formation of the mature Fe-S cluster. This study found that the small mitochondrial chaperone, AtISD11, and AtFH are positive regulators for AtNFS1 activity in Arabidopsis. Moreover, when the three proteins were incubated together, a stronger attenuation of the Fenton reaction was observed compared to that observed with AtFH alone. Using pull-down assays, the authors found that these three proteins physically interact, and sequence alignment and docking studies showed that several amino acid residues reported as critical for the interaction of their human homologous are conserved. These results suggest that AtFH, AtNFS1 and AtISD11 form a multiprotein complex that could be involved in different stages of the iron-sulfur cluster (ISC) pathway in plant mitochondria.

Read the Entire Article Here

Page 1 of 196

SHARE

FacebookTwitterLinkedInYoutube
michelle-h.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News


Site Map     Privacy Policy     Service Terms     Log-in     Contact     Charity Navigator