Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

Adaptation of the heart to Frataxin depletion: Evidence that integrated stress response can predominate over mTORC1 activation

Cardiac dysfunction pathogenesis, and, more generally, how the heart adapts to FXN loss, remain poorly understood in Friedreich's ataxia (FRDA), though are expected to be linked to an energy deficit. The authors modified a transgenic (TG) mouse model of inducible FXN depletion that permits phenotypic evaluation of the heart at different FXN levels, and focused on substrate-specific bioenergetics and stress signaling. When FXN protein in the TG heart was 17% of normal, bioenergetics and signaling were not different from control. When, 8 weeks later, FXN was ~ 97% depleted in the heart, TG heart mass and cardiomyocyte cross-sectional area were less, without evidence of fibrosis or apoptosis. mTORC1 signaling was activated, as was the integrated stress response, evidenced by greater phosphorylation of eIF2α relative to total eIF2α, and decreased protein translation. These results suggest that, in TG hearts, an anabolic stimulus was constrained by eIF2α phosphorylation. Cardiac contractility was maintained in the 97%-FXN-depleted hearts, possibly contributed by an unexpected preservation of β-oxidation, though pyruvate oxidation was lower. Bioenergetics alterations were matched by changes in the mitochondrial proteome, including a non-uniform decrease in abundance of ISC-containing proteins. Altogether, these findings suggest that the FXN depleted heart can suppress a major ATP demanding process such as protein translation, which, together with some preservation of β-oxidation, could be adaptive, at least in the short term.

Read the Full article here




Archived in
  Scientific News



Tagged in
FARA Scientific News

Site Map     Privacy Policy      Service Terms      Contact      Charity Navigator