Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

Protection against hydrogen peroxide-mediated cytotoxicity in Friedreich's ataxia fibroblasts using novel iron chelators of the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone class

Iron-loading diseases remain an important problem because of the toxicity of iron-catalyzed redox reactions. Iron loading occurs in the mitochondria of Friedreich's ataxia (FA) patients and may play a role in its pathogenesis. This suggests that iron chelation therapy could be useful. We developed previously the lipophilic iron chelators known as the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone (PCIH) ligands and identified 2-pyridylcarboxaldehyde 2-thiophenecarboxyl hydrazone (PCTH) as the most promising analog. Hence, this study assessed the efficacy of PCTH and other PCIH analogs compared with various chelators, including deferiprone and desferrioxamine (DFO). Age- and sex-matched control and FA fibroblasts were preincubated with iron chelators and subsequently challenged with 50 microM H2O2 for up to 24 h. The current study demonstrates an interesting structure-activity relationship among the closely related PCIH series of ligands, with only PCTH being highly effective at preventing H2O2-induced cytotoxicity.

Read More: Protection against hydrogen peroxide-mediated cytotoxicity in Friedreich's ataxia


Science C.jpg


Archived in
  Scientific News



Tagged in
FARA Scientific News

Site Map     Privacy Policy     Service Terms     Log-in     Contact     Charity Navigator