Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

 

Scientific News

FARA funds research progress

In this section, you will find the most recent FA research publications, many of which are funded by FARA, as well as information on upcoming conferences and symposiums. You can search for articles by date using the archive box in the right hand column. To locate FARA Funded or Supported Research, click the hyperlink in the right hand column. You may also search for specific content using key words or phrases in the search button at the top right of your screen. Please be sure to visit other key research sections of our website for information on FARA’s Grant Program and the Treatment Pipeline.


Friedreich's ataxia: the vicious circle hypothesis revisited

Friedreich's ataxia, the most frequent progressive autosomal recessive disorder involving the central and peripheral nervous systems, is mostly associated with unstable expansion of GAA trinucleotide repeats in the first intron of the FXN gene, which encodes the mitochondrial frataxin protein. Since FXN was shown to be involved in Friedreich's ataxia in the late 1990s, the consequence of frataxin loss of function has generated vigorous debate.

Friedreich's ataxia: the vicious circle hypothesis revisited

Initial Experience in the Treatment of Inherited Mitochondrial Disease with EPI-743

Inherited mitochondrial respiratory chain disorders are progressive, life-threatening conditions for which there are limited supportive treatment options and no approved drugs. Because of this unmet medical need, as well as the implication of mitochondrial dysfunction as a contributor to more common age-related and neurodegenerative disorders, mitochondrial diseases represent an important therapeutic target. 

Initial Experience in the Treatment of Inherited Mitochondrial Disease with EPI-743

Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in friedreich ataxia fibroblasts

Dramatic advances in recent decades in understanding the genetics of Friedreich ataxia (FRDA)--a GAA triplet expansion causing greatly reduced expression of the mitochondrial protein frataxin--have thus far yielded no therapeutic dividend, since there remain no effective treatments that prevent or even slow the inevitable progressive disability in affected individuals.

Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in friedreich ataxia fibroblasts

Mutation in Fe-S scaffold Isu bypasses frataxin deletion

Frataxin is a conserved mitochondrial protein deficient in patients with Friedreich's ataxia. Frataxin has been implicated in control of iron homoeostasis and Fe-S cluster assembly. In yeast or human mitochondria, frataxin interacts with components of the Fe-S cluster synthesis machinery, including the cysteine desulfurase Nfs1, accessory protein Isd11 and scaffold protein Isu.

Mutation in Fe-S scaffold Isu bypasses frataxin deletion

PEP-1-Frataxin Significantly Increases Cell Proliferation and Neuroblast Differentiation by Reducing Lipid Peroxidation in the Mouse Dentate Gyrus

Frataxin plays important roles in the mitochondrial respiratory chain and in the differentiation of neurons during early development. In this study, we observed the effects of frataxin on cell proliferation and neuroblast differentiation in the mouse hippocampal dentate gyrus. For this, we constructed an expression vector, PEP-1, that was fused with frataxin to create a PEP-1-frataxin fusion protein that easily penetrated frataxin into the blood-brain barrier.

PEP-1-Frataxin Significantly Increases Cell Proliferation and Neuroblast Differentiation by Reducing Lipid Peroxidation in the Mouse Dentate Gyrus

Page 146 of 192

SHARE

FacebookTwitterLinkedInYoutube
Science D.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News


Site Map     Privacy Policy     Service Terms     Log-in     Contact     Charity Navigator