Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

 

Scientific News

FARA funds research progress

In this section, you will find the most recent FA research publications, many of which are funded by FARA, as well as information on upcoming conferences and symposiums. You can search for articles by date using the archive box in the right hand column. To locate FARA Funded or Supported Research, click the hyperlink in the right hand column. You may also search for specific content using key words or phrases in the search button at the top right of your screen. Please be sure to visit other key research sections of our website for information on FARA’s Grant Program and the Treatment Pipeline.


Electrophysiology of Respiratory Chain Complexes and ADP/ATP Exchanger in Native Mitochondrial Membranes

Transport of protons and solutes across mitochondrial membranes is essential for many physiological processes. However, neither the proton-pumping respiratory chain complexes nor the mitochondrial secondary active solute transport proteins have been characterized electrophysiologically in their native environment. In this study, solid-supported membrane (SSM) technology was applied for electrical measurements of respiratory chain complexes CI, CII, CIII, and CIV, the F(O)F(1)-ATPase/synthase (CV), and the adenine nucleotide translocase (ANT) in inner membranes of pig heart mitochondria.

Electrophysiology of Respiratory Chain Complexes and ADP/ATP Exchanger in Native Mitochondrial Membranes

Normal and Friedreich ataxia cells express different isoforms of frataxin with complementary roles in iron-sulfur cluster assembly

Friedreich ataxia (FRDA) is an autosomal recessive degenerative disease caused by insufficient expression of frataxin (FXN), a mitochondrial iron-binding protein required for Fe-S cluster assembly. The development of treatments to increase FXN levels in FRDA requires elucidation of the steps involved in the biogenesis of functional FXN. The FXN mRNA is translated to a precursor polypeptide that is transported to the mitochondrial matrix and processed to at least two forms, FXN(42-210) and FXN(81-210).

Normal and Friedreich ataxia cells express different isoforms of frataxin with complementary roles in iron-sulfur cluster assembly

Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly

Reduced levels of frataxin, an essential protein of as yet unknown function, are responsible for causing the neurodegenerative pathology Friedreich's ataxia. Independent reports have linked frataxin to iron-sulphur cluster assembly through interactions with the two central components of this machinery: desulphurase Nfs1/IscS and the scaffold protein Isu/IscU. In this study, we use a combination of biophysical methods to define the structural bases of the interaction of CyaY (the bacterial orthologue of frataxin) with the IscS/IscU complex.

Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly

Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex

Cellular depletion of the human protein frataxin is correlated with the neurodegenerative disease Friedreich's ataxia and results in the inactivation of Fe-S cluster proteins. Most researchers agree that frataxin functions in the biogenesis of Fe-S clusters, but its precise role in this process is unclear. Here we provide in vitro evidence that human frataxin binds to a Nfs1, Isd11, and Isu2 complex to generate the four-component core machinery for Fe-S cluster biosynthesis.

Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex

Combined Therapy with Idebenone and Deferiprone in Patients with Friedreich's Ataxia

Iron chelators are a new therapeutical approach for patients with Friedreich's ataxia, on the basis that oxidative cell damage that occurs in these patients is due to the increasing deposits of mitochondrial iron pools. The objective of the study was to evaluate the effects of the combined therapy of idebenone and low oral doses of deferiprone on the neurological signs and cardiac function parameters.

Combined Therapy with Idebenone and Deferiprone in Patients with Friedreich's Ataxia

Page 155 of 186

SHARE

FacebookTwitterLinkedInYoutube
Event E.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News


Site Map     Privacy Policy     Service Terms     Log-in     Contact     Charity Navigator