Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

 

Scientific News

FARA funds research progress

In this section, you will find the most recent FA research publications, many of which are funded by FARA, as well as information on upcoming conferences and symposiums. You can search for articles by date using the archive box in the right hand column. To locate FARA Funded or Supported Research, click the hyperlink in the right hand column. You may also search for specific content using key words or phrases in the search button at the top right of your screen. Please be sure to visit other key research sections of our website for information on FARA’s Grant Program and the Treatment Pipeline.


Friedreich's Ataxia Induced Pluripotent Stem Cells Model Intergenerational GAA·TTC Triplet Repeat Instability

The inherited neurodegenerative disease Friedreich's ataxia (FRDA) is caused by GAA⋅TTC triplet repeat hyperexpansions within the first intron of the FXN gene, encoding the mitochondrial protein frataxin. Long GAA⋅TTC repeats cause heterochromatin-mediated gene silencing and loss of frataxin in affected individuals. We report the derivation of induced pluripotent stem cells (iPSCs) from FRDA patient fibroblasts by transcription factor reprogramming.

Friedreich's Ataxia Induced Pluripotent Stem Cells Model Intergenerational GAA·TTC Triplet Repeat Instability

Getting to the core of repeat expansions by cell reprogramming

In this issue of Cell Stem Cell, Ku et al. (2010) demonstrate that iPSCS derived from Friedreich's ataxia patients exhibit expansion of the causative (GAA)(n) repeat, consistent with the repeat instability observed during intergenerational transmissions in humans. Furthermore, the epigenetic signature of the disease remains intact in Friedreich's ataxia iPSCs.

Getting to the core of repeat expansions by cell reprogramming

Exploration of transitional life events in individuals with Friedreich ataxia: Implications for genetic counseling

Human development is a process of change, adaptation and growth. Throughout this process, transitional events mark important points in time when one's life course is significantly altered. This study captures transitional life events brought about or altered by Friedreich ataxia, a progressive chronic illness leading to disability, and the impact of these events on an affected individual's life course.

Exploration of transitional life events in individuals with Friedreich ataxia: Implications for genetic counseling

Electrophysiology of Respiratory Chain Complexes and ADP/ATP Exchanger in Native Mitochondrial Membranes

Transport of protons and solutes across mitochondrial membranes is essential for many physiological processes. However, neither the proton-pumping respiratory chain complexes nor the mitochondrial secondary active solute transport proteins have been characterized electrophysiologically in their native environment. In this study, solid-supported membrane (SSM) technology was applied for electrical measurements of respiratory chain complexes CI, CII, CIII, and CIV, the F(O)F(1)-ATPase/synthase (CV), and the adenine nucleotide translocase (ANT) in inner membranes of pig heart mitochondria.

Electrophysiology of Respiratory Chain Complexes and ADP/ATP Exchanger in Native Mitochondrial Membranes

Normal and Friedreich ataxia cells express different isoforms of frataxin with complementary roles in iron-sulfur cluster assembly

Friedreich ataxia (FRDA) is an autosomal recessive degenerative disease caused by insufficient expression of frataxin (FXN), a mitochondrial iron-binding protein required for Fe-S cluster assembly. The development of treatments to increase FXN levels in FRDA requires elucidation of the steps involved in the biogenesis of functional FXN. The FXN mRNA is translated to a precursor polypeptide that is transported to the mitochondrial matrix and processed to at least two forms, FXN(42-210) and FXN(81-210).

Normal and Friedreich ataxia cells express different isoforms of frataxin with complementary roles in iron-sulfur cluster assembly

Page 157 of 189

SHARE

FacebookTwitterLinkedInYoutube
Event I.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News


Site Map     Privacy Policy     Service Terms     Log-in     Contact     Charity Navigator