Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

 

Scientific News

FARA funds research progress

In this section, you will find the most recent FA research publications, many of which are funded by FARA, as well as information on upcoming conferences and symposiums. You can search for articles by date using the archive box in the right hand column. To locate FARA Funded or Supported Research, click the hyperlink in the right hand column. You may also search for specific content using key words or phrases in the search button at the top right of your screen. Please be sure to visit other key research sections of our website for information on FARA’s Grant Program and the Treatment Pipeline.


Transposon Tn7 Preferentially Inserts into GAA-TTC Triplet Repeats under Conditions Conducive to Y-R-Y Triplex Formation

Expansion of an unstable GAA•TTC repeat in the first intron of the FXN gene causes Friedreich ataxia by reducing frataxin expression. Structure formation by the repeat has been implicated in both frataxin repression and GAA•TTC instability. The GAA•TTC sequence is capable of adopting multiple non-B DNA structures including Y•R•Y and R•R•Y triplexes. Lower pH promotes the formation of Y•R•Y triplexes by GAA•TTC. Here we used the bacterial transposon Tn7 as an in vitro tool to probe whether GAA•TTC repeats can attract a well-characterized recombinase.

Transposon Tn7 Preferentially Inserts into GAA-TTC Triplet Repeats under Conditions Conducive to Y-R-Y Triplex Formation

Variations of frataxin protein levels in normal individuals

Friedreich's ataxia (FRDA) is the most common of the inherited ataxias and is associated with GAA trinucleotide repeat expansions within the first intron of the frataxin (FXN) gene. There are expanded FXN alleles from 66 to 1,700 GAA·TTC repeats in FRDA patients and correlations between number of GAA repeats and frataxin protein levels are assumed. Here, we present for the first time frataxin protein levels as well as analysis of GAA triplet repeats in the FXN gene in a population of 50 healthy Austrian people.

Variations of frataxin protein levels in normal individuals

Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol

The mitochondrion is well known for its key role in energy transduction. However, it is less well appreciated that it is also a focal point of iron metabolism. Iron is needed not only for heme and iron sulfur cluster (ISC)-containing proteins involved in electron transport and oxidative phosphorylation, but also for a wide variety of cytoplasmic and nuclear functions, including DNA synthesis. The mitochondrial pathways involved in the generation of both heme and ISCs have been characterized to some extent. However, little is known concerning the regulation of iron uptake by the mitochondrion and how this is coordinated with iron metabolism in the cytosol and other organelles (e.g., lysosomes).

Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol

Page 194 of 221

SHARE

FacebookTwitterLinkedInYoutube

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News


Site Map     Privacy Policy      Service Terms      Contact      Charity Navigator